Multiple levels in intermediate band solar cells
نویسندگان
چکیده
منابع مشابه
Intermediate band solar cells: Recent progress and future directions
Articles you may be interested in Proposal of high efficiency solar cells with closely stacked InAs/In0.48Ga0.52P quantum dot superlattices: Analysis of polarized absorption characteristics via intermediate–band Appl. Optimization of growth conditions of type-II Zn(Cd)Te/ZnCdSe submonolayer quantum dot superlattices for intermediate band solar cells Influence of wetting layers and quantum dot s...
متن کاملOptical Characterization of Quantum Dot Intermediate Band Solar Cells
In this paper we present an optical characterization for quantum dot intermediate band solar cells (QDIBSCs). The cells were developed by growing a stack of ten InAs/GaAs QDs layers between p and n doped GaAs conventional emitters. Electroluminescence, EL, photoreflectance, PR, and transmission electron microscopy, TEM, were applied to the samples in order to test and characterize them opticall...
متن کاملIntermediate Layers in Tandem Organic Solar Cells
Tandem structures can boost the efficiency of organic solar cell to more than 15%, compared to the 10% limit of single layer bulk heterojunction devices. Design and fabricating of intermediate layers plays a very important role to achieve high device performance. This article will review the main experimental progresses of tandem organic solar cells, and focus on the intermediate layers (charge...
متن کاملIntermediate band solar cell with extreme broadband spectrum quantum efficiency.
We report, for the first time, about an intermediate band solar cell implemented with InAs/AlGaAs quantum dots whose photoresponse expands from 250 to ∼6000 nm. To our knowledge, this is the broadest quantum efficiency reported to date for a solar cell and demonstrates that the intermediate band solar cell is capable of producing photocurrent when illuminated with photons whose energy equals t...
متن کاملEvaluation of the efficiency potential of intermediate band solar cells based on thin-film chalcopyrite materials
This paper discusses the potential of the intermediate band solar cell IBSC concept to improve the efficiency of thin-film chalcopyrite solar cells. The results show that solar cells based on CuGaS2, with a radiative limiting efficiency of 46.7%, exhibit the highest potential. A simple method for the identification of transition elements that when incorporated in CuGaS2 could possibly introduce...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Applied Physics Letters
سال: 2010
ISSN: 0003-6951,1077-3118
DOI: 10.1063/1.3280387